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C! Positive Bernstein-Bézier Rational Quartic
Interpolation
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Abstract — A positivity preserving C* rational quartic
Bernstein-Bézier interpolation scheme is developed
for scattered data. The constraints are developed on
the Bézier ordinates to preserve the positive shape of
scattered data. The weight functions are free to
improve the shape of the surface. The developed
scheme has more degrees of freedom as compared to
existing rational positivity preserving interpolation
schemes. It is local and equally applicable to data as
well as data with derivatives.

Keywords- C* Bernstein-Bézier ~ rational  quartic
function, positivity, scattered data interpolation,
weight functions, Bézier ordinates.

l. INTRODUCTION

Scattered data originates from a number of
applications including earth sciences,
meteorology, electronic imaging, reverse
engineering, industrial design, 3D photography,
ship  building, aeronautics and medical
modelling of human body parts. The data can be
convex, monotone or positive partially or over
the whole domain. However, the problem under
consideration here is positivity of scattered data.

The problem of positivity preserving
interpolation of scattered data has been
discussed by many authors. Some of the
noticeable contributions are reviewed here.
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Brodlie, Asim and Unsworth [2] discussed the
problem of visualization of data by using
modified quadratic Shepard method. To assure
the positivity of interpolant, sufficient conditions
were imposed on quadratic basis functions. To
interpolate the fractional data, they inhibited the
interpolant  within the limits [0,1]. The
generalized form of the interpolant was
produced. In [6], Hussain and Hussain
developed a positivity preserving interpolation
scheme which was based on Coons patches. A
rational function with shape parameters
(Hermite form) was used to interpolate each
boundary of triangle. The side-vertex
interpolation was also performed by a rational
function (Hermite form). The final surface patch
was the convex combination of these side-vertex
interpolant. The authors in [6] developed data
dependent constraints on shape parameters to
preserve the positive shape of data. Hussain and
Hussain [7] developed a C' Bernstein-Bézier
rational cubic scheme to preserve the positive
shape of scattered data. Luo and Peng [8]
presented a range restricted C' rational spline
interpolation scheme for scattered data. The
rational spline interpolant was represented as a
convex combination of three cubic Bézier
triangular patches. The range restricted obstacles
were the polynomial surfaces of degree up to
three. Mulansky and Schmidt [9] proposed a
range  restricted C'  quadratic  spline
interpolation scheme for scattered data. The
domain was triangulated by the Powell-Sabin
refinement. The solution to the problem came
out as a solvable system of linear inequalities for
the gradients as parameters. The inequalities
were solved by a global quadratic optimization
problem, where the thin plate functional was the
objective function and the system of inequalities
were the constraints. Herrmann, Mulansky and
Schmidt [4] proposed a univariate and bivariate
C'quadratic range restricted interpolation
scheme for scattered data. In [9], the range
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restricting constraints were piecewise constants,
whereas, in [4] the piecewise quadratic functions
were the lower and upper obstacles to the value
of interpolant.

In this paper, a C' Bernstein-Bézier rational
guartic interpolation scheme is developed to
preserve the positive shape of scattered data.
The rational quartic Bernstein-Bézier function
has 15 Bézier ordinates and 15 weight functions.
Due to high number of Bézier ordinates(control
points), the interpolated surface is closer to the
shape of control polygon as compared to lesser
degree interpolating functions. The weight
functions provide degrees of freedom for
surface’s shape improvement if desired. The
constraints are developed on the Bézier
ordinates to preserve the positive shape of
scattered data. If for any triangular patch, the
Bézier ordinates fail to obey the developed
constraints then weights functions are modified
to preserve positive surface through positive
scattered data.

The advantages of the proposed rational quartic
interpolation scheme to the existing ones are as
follows: In [4], [8] and [9], constraints were
developed on the derivatives at knots to assure
positivity. The proposed positivity preserving
rational quartic interpolation scheme of this
paper keeps the derivatives unconstrained, hence
equally applicable to data as well as data with
derivatives. In [7], a positivity preserving
rational cubic Bernstein-Bézier interpolation
scheme was proposed. The rational cubic
function of [7] had ten Bézier ordinates,
whereas, the rational quartic scheme of this
paper has fifteen Bézier ordinates. It follows that
the positive surface developed by rational
quartic Bernstein-Bézier function is closer to the
control polygon as compare to the rational cubic
interpolant [7]. Moreover, it has fifteen weight
functions but cubic interpolant [7] had ten
weight  functions. Thus rational quartic
interpolant has more degrees of freedom as
compared to [7]. Unlike [2], the proposed
rational quartic interpolation scheme of this
paper is local.

The remaining paper is organized as follows:
The Section Il presents the Bernstein-Bézier
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rational quartic function. The problem of
positivity and C'continuity are discussed in
Section Il and Section 1V respectively. Section
VI concludes the paper.

Il. BERNSTEIN-BEZIER RATIONAL
QUARTIC FUNCTION

The Bernstein-Bézier functions can be used to
interpolate the scattered data only if the data is
arranged over the triangular grid (domain is
union of non-intersecting triangles). The rational
Bernstein-Bézier ~ functions  possess  free
parameters known as weight functions. The
smoothness of interpolated surface is obliged to
suitable choice of weight functions. The
Bernstein-Bézier rational quartic function is
defined as:

P ) i)
P(u,v,w):—l(u VW), 1)
P, (u,v,w)
where
R(uvw)= > uvwob
i+j+k=4
PZ(U,V,W)z Z UiVjWka)ijk '
i+j+k=4
Oy » i+ j+k =4 are the weight functions. b,

by, and by, are the Bézier ordinates at the three
vertices of triangle; by,,, by, Byias Pagys Bogys Bigas
B,0, by, and b, are the boundary Bézier
ordinates; b,,, b,, b,, are the inner Bézier
ordinate and u,V,w are the barycentric
coordinates.

The barycentric coordinates with respect to the
triangle AV\V,V, can be computed from the

following convex combination:
V =uV, +W, +wV,,
where u+v+w=1 and u>0,v>0w>0.

V(x,y)is an arbitrary point of the triangle
AVV,V, with vertices V, (X, Y;), V,(X,,Y,) and
VS(XS’yB)'
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I1l. POSITIVE BERNSTEIN-BEZIER
RATIONAL QUARTIC FUNCTION

In this section, the sufficient conditions are
derived on the ordinates of Bernstein-Bézier
rational quartic function (1) to preserve the
shape of positive scattered data.

It can be easily observed that P(u,v,w)>0if

P (u,v,w)>0and P,(u,v,w)>0. We assume
that the Bézier ordinates at the vertices are
strictly positive i.e. by >0, by, >0 and
Dy, >0. The sufficient conditions on the

remaining Bézier ordinates are derived to ensure
the positivity of the entire patch.

baoo

boao boz1 booa

boz2 bo13

Fig. 1 Distribution of the Bézier ordinates of
the Bernstein-Bézier rational quartic function.

Vi

e3 e,

Vz e V3

Fig. 2 Location of edges of AVV,V,.

Let
b400 =L, bo4o =M, b004 =N, (2)

where L>0, M >0and N >0. It is assumed

that all the boundary Bézier ordinates have the
same value i.e.
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b310 = b130 = b301 = b103 = b031 = b013 = bzzo = bzoz

=by, =by, =by, =T,

= bozz

@)

where r>0. The weight functions are chosen in
the following way:

@00 =, @y =M, @y, =1, oy =1,
where i+ j+k=4,i=4,j=4k=4, 4)
>0, m>0,n>0and t>0.

The positivity of B (u,v,w)depends upon the
Bézier ordinates by, Vi, ik, i+ j+k=4
Substituting the values of Bézier ordinates and
weight functions from (2)-(4) into P, (u,v,w), it
is rewritten as:

P (u,v,w)=u’lL+Vv'mM +w'nN

—rt(4u3v +4uv° + 4uPw + 4uw® + 4viw + 4vw?
+6U%V? + 6U’W? + 6VPW? +12uvw +12uviw
+1200w° ). (5)

Since,
403V + 4uV? + 4w + 4uw? + Aviw + Avw? + 6u?v?

+6UW? + 6VAW? +12uvw +12uviw + 12uvw?
4

=1-u*-v'-w'
Utilizing the above expression in (5), P,(u,v,w)
takes the form
B (u,v,w)=u*(IL+rt)+v* (mM +rt)

+wW (NN +rt) - rt. (6)

From (5) it is clear that when r=0,
P(u,v,w)>0, when rt increases, P, (u,v,w)
decreases.

Assume that I, m, n, r, and t are fixed, at the
minimum value of P, (u,v,w),the following
conditions hold:
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R A, ®)
ou ow

Substituting the value of P,(u,v,w) from (6) in

to (7) and (8) the following ratio is obtained

1 1 1
u:viw= : :

(IL+rt)% -(mM +rt)% -(nN +rt)%.
)

Since u+v+w=1 the ratio involved in (9)

provides the following values of barycentric
coordinates u, vand w

1 1
- S%/IL+rt’V S¥YmM +rt’
1
S¥nN +rt
1 1 1

= + + .
NL+rt ImM +rt YnN +rt

Substituting these u, vand w into (6), we
obtain the minimum value of B, (u,v,w).
R(uv,w)= ! -

( 1 1 1 T
+ +
L+t ImM+rt InN+1t

(10)

It is clear from (10), P, (u,v,w)>0,when r=0

and P,(u,v,w) decreases as r increases.
Equation (10) is rewritten as:
1

Pl(u,v,w)zrt(ﬁ—lj, (11)

where

) a ERN
R= (I—L+1) +[M+1] +(ﬂ+1j .
rt rt rt

Replacing 1 by m, >0 in (11), we have
r

il

(12)
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where
1 1 ERN

R = (mlTIL JrlJ3 J{mltﬂ +1j3 J{mlTnN +1j3

To assure positivity of B (u,v,w), we shall

) - 1 .
estimate minimum value of r=—. Solving
ml
Equation (12) for m, we have
F(ml)zl, (13)

where

F ()=t
WH gmﬁpm JmltNl

It is observed that for >0, m>0, n>0, L>0,
M>0, N>0,t>0 and m >0, we have

F'(m)<0 and F"(m)>0.Since F"(m)>0
vm, F(ml) is convex over the whole domain.

This observation reports that F(m,) must have

one minima over the entire interval. Solving the
Equation (13) we shall find the required value of
m,. The Equation (13) can solved from any
numerical technique of estimation of roots,

however here it is solved through Newton-
Raphson method. The required lower bound of

Bézier ordinates by, by, Dy, Bygs, gy, Doy,
. 1
Basgs Bagos Boggs Bogs By @Nd by, is —r :_H-
|

The above discussion can be summarized as:

Theorem 1. The Bernstein- Bézier rational
quartic function (1) with b,, =L, by, =M,
Dys =N where L>0, M >0and N>0 is
positive (P(u,v,w)>0, Yu,v,w) if the Bézier
ordinates satisfy the relation b, b, by, B,
b031' b013' bZZO’ bZOZ’ bOZZ' b211’ blZl' b112 2 _r' r iS
obtained by solving the Equation (13) where
1
U

r=—.
m
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IV. C'POSITIVE BERNSTEIN-BEZIER
RATIONAL QUARTIC SURFACE

The construction of C' positivity preserving
surface for the scattered data (xi,yi,zi),
i=12,3,..,N,where
following steps:

z,>0 involves the

1. Triangulation of the domain data (x;,Y;),

i=12,3..,N.

Initialization of partial derivatives.

3. Creation of the final surface which
comprises of quartic Bézier triangular
patches each of which is guaranteed to
remain positive.

N

The Bernstein-Bézier rational quartic triangular

patch is C'at the vertices of the triangle if the
boundary Bézier ordinates are:

a) —_—
_ 040
Byay = Bpso + V)V, o Vi |\/2
031

a) _—
Bygp =bpye — 4 ~ VV, o Vf |\/2

130

a) _—
byos = Dgs + 4 o0 V.V, e Vi |\/3

103

Boss = Bpos — %\T\/s. o Vf |\/3
13

(14)

a) —_
_ 400
By = byge + V)V, o Vi |\,1
310

Doy =Dyg0 — Lico \73\71 o Vf

301

Vi

The values of boundary Bézier ordinates are
calculated by adopting the approach of [7]. For
an arbitrary value of weight function the
boundary Bézier ordinates defined in (14) may
not obey the lower bounds developed in
Theorem 1. From (14), it is clear that the
positivity condition proposed in Theorem 1 will
be satisfied by the boundary Bézier ordinates,
either by increasing the weights @,,,, @y, @y,

@yo5, Opays Dpyz0 D9, Doy Wy OF DY decreasing
the weights @,y,, @y,and @y,. In such a way,
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the derived positivity conditions are satisfied
e.g. by, >—r or

22 (1) 20 (-0 ) o

The weights are involved in the positivity
preservation of data. @,,,, @y, @yys Dyysr Dgays
D1z Oppyy O ANA @, are local to each
triangle, thus the change in the values of these

weights will not affect the C’continuity at the
vertices.

A. Inner Bézier ordinates
For each triangle, now we will find the inner
Bézier points. This needs to be done in order to
ensure C'continuity across patch boundary. In
this scheme each triangular surface patch is a
convex combination of three quartic Bézier
patches. The final surface patch is the convex

combination of the triangular patches P',
i=1,2,3. The triangular patches have same

vertex and boundary Bézier ordinates but
different inner Bezier ordinates. The constraints
are determined on the inner Bézier ordinates to

ensure C' continuity along the edges e,
i=1,2,3 of triangle.

The final surface patch P is the convex
combination of triangular patches P', i=1,2,3.
The final surface P is expressed as:

P=C,P'+C,P’ +C3P3, (15)
where
pi_R+R . R+R, o R+R
D ' D ' D '

R = U’ @,00D00 + V" 0400040 + W' @40Di0

+ AUV @y By + AUV @b + AU WG by,

+ AUW 0,3y 05 + VW 03y Digy + AW 0130

+ BUAVZ @500, + BUPW 5,0, + BV W @,,0,
R, =12u" Wiy, b, +120v*Weg ', +120M0 b,
R, =12u" Wiy, b”, +120v Way, by, +120m @y b,
R, =12u°wWa, b, +12u*Wa,, b’ ,, +12u0m @, ,b° ,,,



INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 8, 2014

D =U%@,5 + V' @y + W' 0y, + AUV, + UV @y, . (—1 -1 j
3= T~ A
+4UPWa,, + AUWP o, + AW, + AW, 2 2
P P P
HBUVZ @y + BU W’ @y, + BV W 0y Substituting the values of 8_ % and % in
2 2 2 u
+lau Vwaz)mz L2 Wa, +120vW m,, (17) and after some simplification we have
VA
C = ,
PvAW +utw +udv P AV +BAWHCAW +DVW +EVAW +RVAR +Guf +Hw
2,02 P )
C,= uw , ay (aV* -+ weevw +le\?+elV\7‘)2
VAW + AW +u?v?
2,2 (18)
c - u’v
VAW +utw +udv? where

o L o s A = 40501500130 — 20400y Oy + (2a)o4o(0040
Substituting the values of P*, P and P°, we

have: + 200000400 — A0s0 D30 — 25"04050031)b040’
()= R+120°Wes, by, +120AWeg, 0, +H120W g fy., B, =163, @,350,30 + 120,400,510, 51 — 6040 D420

D + (6(0031(0040 — 120,027 — 83 D40 +6D45 D40 ) Do
where (16) + (8o Dya, — BW,40003, — 1613005, )Bygy
b, - VW U UtV C, =120y, + 4805y Ul + 2405, B

VAW +UPW + Uy +( 20300 — 6@y ~1201, 00 ) By
V2W2b1121 + uzWzblzzl + u2V2b1321 —(24 6 -12 12
= el ( W5y, + O,y Whyy Wy + a)oal%zz)bozz
VW +U"W +uU’v
2, 2.1 2., 212 2.2 + 12, ey 00
vAwhl, +u’w?b?, +u?vh’
> = 2. D, = 4@00,050105 + 48431 @11,01,, +160130150b15

By

b V2W2 + UPW + UV
120y 011071 — 20430 W0,P004 + (2 Dp130040 + 2004 Doy
i i i ~120,53004 ) Bpag — (4811, +1205, 03y ) By
To determine the values of b,,,, b,,and b}, we ) ( )
o oP +(86004060013 — 1643103 1630015 — 20)4000)013)b013
use the value of normal derivatives—,

on Jr(120)0315"022 — 120,50, )bozzi
i =1,2,3along the edges ¢, i=1,2,3. E, = 400, 0150D13 +16@5, 04050105 + 483015101,
Hence the inward normal derivative of P i.e. +1 20y @,1,0,15 — 2000400000
S—P along the e, is +(2 W0 Do0s —A0y30 D04 — 6031 Do, )boo4
£ +(8e0y13Wa1 + 60y Wy — 40,4505, )
P P Pl-1) oP(-1 013031 004 @31 03@n31 ) Poz1
5_nl - a(l) + E(?j + %(?j + (160)031(0013 — 48,9, 013 — 12050, 5 ) By
_oP 1oP 1P _(725’)112(0022 +12a)012a)022)b0221
U 2v 2w F =12@,,,@3,, 05, +480yy3031,01, + 24050, @i5D
11 (17) ~B0y0, Oy py + (650031@004 —12ay,, @y, B, ) Boos
n = (1,7,7J is the inward normal to the +(125y @13 — 48001,y — 160130015 ) By
edge e, . Similarly the inward normal to the +(6h04 iz — 4By 0y 12033055 ) O

remaining edges are n, = (_711 _71) and

ISSN: 1998-0140 14
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Gy =120, 011,011, +16041301030105 — 60304205,
+ ( 60 Wy — 60413000, =121, ) Boos

+ ( 204 D13 + 813013 — 240030915 ) Byass

H, = 400,004, 45 — 2050, 045015

+ (20)013("004 — 4,30, ) Boos-

Since we are interested in the linear value of

S—P (both numerator and denominator of (18)

nl
should be linear). Numerator of (18) is made
linear by the following substitutions:

B, =6A +H,, C,=15A +6H,,

D, =20A +15H,, E =15A +20H,,
F, =6A +15H,,

G =A +6H,.

Similarly for the denominator, where a, = @,
b, =4y, ¢, =604y, d; =4wy;, € = W4y,
The expression

2. . .
(av* +byvPw+ cv*w’ + dvw® +ew* ) is linear if

2 2
c, =a,e,, where ¢, =%,

a, =€ 1.6. 0y = Dy -

The above computation leads to the following
system of equations:

- 30y + Dyos _ Wy + Oy
31 = 2 y Wopp = 5 ,
_ Oy + 30y, _ 3wy + Dy
W13 = 4 y W) = 2 )
_ Wy + Oyyy Oy0 + 300,
Wopp = > 1 W3 2 .
O = 30450 + Do _ Wy F Oy
310 = 2 1 Wy = 5 ;
O = W0 + 3440
h30 =

From the above discussion it is clear that only
three parameters (@, , @y, @y ) are free while

the values of remaining are dependent on these
parameters.
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Let Wy = Wogo = Dpog = W13 = Wygz = W39 =
Oz = Dy = Wy = Oy = Wy = Wy = K,
where k, is any positive real number.

Similarly the normal derivatives along the other

edges i.e. i and a—Pcan be computed.
on, on,

Linearity of normal derivatives along the edges

provides the following set of restrictions on the
Bézier ordinates and weight functions.

12K@5,015, —12K iy, — 6K 7Dy, = A, (19)
12ka’112b1112 + 48ka’121b1121 —12k ;1,0
—30k2b022 = A;, (20)
48kw112b1112 + 72ka)121b1121 + 72K ;5,040
—48k@,,0,5 +12k2b022 = A;, (21)
48kw121b1121 — 48K y5)byy5 + 7kanzblllz
—12ka,,b,, _12k2b022 =A, (22)

12ka)121b1121 + 48ka’112b1112 - 30k2b022 — 48K ;1,0

—12Ke,5,by0, = A;v (23)
12kw112b1112 —12k 4,000, — 6k2b022 = A&Ia' (24)
12ka)211b2211 —12k @b, — 6k2b202 =B, (25)
48kw211b2211 + 12ka)112b1212 —12Ke, 1,0,
—~48Ky1,0, —30k’by, = By, (26)
12ka)211b2211 + 48ka)112b1212 — 12K @,1,0,,
~72K@y by, ~12K’Dy, = By, (27)
48ka)211b2211 + 72kw112b1212 — 48K @y, by,
+12k2b202 = B;, (28)
48kw112b1212 —12k @y by, — 48K ay;,b, 0
—3Ok2b202 = B;, (29)
12K ;1,050 = B, (30)
12K @y, 051, +12K@,1,0,50 — 6k 0,0 = C,, (31)
12kw121b1321 + 48ka)211b2311 — 48k @y, by,
—12K;,b,00 — 3Ok2b220 =G, (32)
72kw211b2311 + 48kw121b1321 — 48k @, p,Pyy,
—12K@,,,0,,0 + 34k2b220 = Cé, (33)

48ka)211b2311 + 72ka)121b1321 — 48k @y, b4 +12k2b220
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~72K,,,0,,, =C,, (34) X 0 1 1 1 1
3 3 y 3 -3 2 -1 0
12k 51,051, + 48K @151 — 48K @105 F | 0.9100 | 0.0770 | 05598 | 1.3646 | 1.7515
~12k@,,,b,,, —30k’b,,, =C,, (35) X 1 1 2 2 2
12kw121b1321 —12k @, by, — 6k2b220 = C(;' (36) y 2 3 -3 -1 1
F | 05598 | 0.0770 | 0.0098 | 1.4013 | 1.4013
. . . . X
where A, B and C;, i=12..6 are y 2 3:; 3; 31 g
known(expressions of known Bézier ordinates E | 0.0098 | 0.7703 | 0.8513 | 0.9862 | 1.0511
b130 ) b310 ) b301 ) b103’ b031 ) b013 ) b4oo ) b040 and X 3 3 3
Boos )- y 1 2 3
F

0.9862 | 0.8513 | 0.7703

The set of equations (19)-(36) has lesser
unknowns than number of equations. It provides Table 2. A positive scattered data set.

a flexible choice of unknowns. The optimal 0 0 0 0 0

choice of boundary Bézier ordinates and weights 0 0.1250 | 0.2500 | 0.3750 | 0.6250
are those which establish first derivative 0.7664 | 0.8220 | 0.8026 | 0.6464 | 0.3892
continuity at vertices and edges and inherits 0 0 0 0.1250 | 0.1250
positive shape of data as positive surface. 0.7500 | 0.8750 | 1.0000 0 0.3750

0.3395 | 0.3026 | 0.2703 | 0.8467 | 0.8278

V. NUMERICAL EXAMPLES 0.1250 | 0.1250 | 0.1250 | 0.2500 | 0.2500

0.5000 | 0.8750 | 1.0000 0 0.2500

In this section, the results developed in Section 05245 | 02817 | 02516 | 08189 | 1.1653

I1-Section IV are implemented on two positive 02500 | 02500 | 02500 | 0.2500 | 0.2500

scattered sets taken in Table 1 and Table 2. 0.3750 0.5000 0.6250 0.8750 1.0000

Firstly the data sets are arranged by Delaunay 08523 | 05046 | 03382 | 02447 | 0.2222

triangulation method. Fig. 3 and Fig. 6 are the 03750 | 03750 | 03750 | 03750 | 0.3750

Delaunay triangulation of the data sets of Table 0 01250 | 0.6250 | 0.7500 | 1.0000

1 and Table 2 respectively. The linear 06331 | 08042 | 02620 | 01089 | 01842

interpolation of these positive data sets are 05000 | 05000 | 05000 | 05000 | 05000

shown in Fig. 4 and Fig. 7 which clearly indicate 0 02500 | 03750 | 0.6250 | 0.7500

that shape of surface is positive over the whole 04349 | 05381 | 04602 | 02096 | 0.0437

domain. The interpolation of these data sets by 05000 | 05000 | 06250 | 06250 | 0.6250

the scattered data interpolation scheme 08750 | 1.0000 0 01250 | 0.5000

developed in Sections II-IV shown in Fig. 0.0924 | 01460 | 03203 | 02002 | 03601

5(Table 1) and Fig. 8(Table 2). It is clear from 06250 | 06250 | 0.6250 | 0.7500 | 0.7500

Fig. 5 and Fig. 8 that positive shape of the 06250 | 08750 | L0000 0 0.1250

surface is preserved. 0.2124 | 01203 | 01124 | 02521 | 0.3846

Table 1. A positive scattered data set. 07500 | 07500 | 0.7500 | 08750 | 0.8750

TI<|X|IT<|[XTM<| X T<|XIT<|XTM<|XT<|XT<| X T<|XT<XT<| X Tl<| X

X | 3 3 3 3 3

v 1 3 P 0 n 5 03750 | 06250 | 1.0000 | 0 | 02500
F | 1.0497 | 0.9687 | 0.7689 | 0.8338 | 0.9687 06190 | 02105 | 0.0810 | 0.1796 | 04675
X 3 > > > > 0.8750 | 0.8750 | 0.8750 | 0.8750 | 10000
vy 3 3 > 0 2 03750 | 06250 | 0.8750 | 1.0000 | 0

F | 1.0497 | 1.8102 | 1.2884 | 0.0007 | 18102 04958 | 01512 | 0.0630 | 0.0553 | 0.1076
X T 1 1 1 = 5l 10000 | 1.0000 | 1.0000 | 1,0000 | 1.0000
v 1 3 > 1 . 2 0.1250 | 0.2500 | 0.3750 | 0.5000 | 0.6250
F | 1.7430 | 1.2602 | 04554 | 0.4554 | 1.7430 01552 | 0.2302 | 02405 | 0.1610 | 00831
X T o 0 5 5 5 10000 | 1.0000 | 1.0000

v 3 > 5 ; 5 07500 | 0.8750 | 1.0000

F | 09100 | 0.9100 | 0.9200 | 0.9100 | 0.9100 0.0504 | 0.0406 | 0.0359
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Fig. 3 Triangulation of the domain of positive data
set in Table 1.

yoaxis 4 3 X-axis

Fig. 6 Triangulation of domain of positive data set
in Table 2.

Fig. 4 Linear interpolation of positive data set in
Table 1.
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Fig. 7 Linear interpolation of positive data set in
Table 2.

Fig. 5 Positive rational quartic surface.

ZeaXis

y-axis
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Fig. 8 Positive rational quartic surface.

VI. CONCLUSION

In this study an interpolation scheme is
developed to preserve the shape of positive
scattered data. The Bernstein-Bézier rational
quartic function is used as interpolation tool.
The Bernstein Bézier rational quartic function is
the combination of Bézier ordinates and weight
functions. These weight functions behave like
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shape refinement parameters (free parameters).
The used interpolation technique requires pre-
triangulation of data. The data is triangulated
such that each data point is lying at the vertex of
triangle. Data points provide the values of vertex
Bézier ordinates. The values of boundary Bézier

are computed by C'continuity at the vertices of

triangles. The C'continuity along the edges of
triangles provides the value of remaining Bézier
ordinates and weight functions. The lower
bounds of inner and boundary Bézier ordinates
are determined to assure positivity of triangular
patch. If these Bézier ordinates do not obey the
developed constraints of positivity then these are
modified by the values of weight functions to
assure positivity.

The developed interpolation is local,C*,
applicable to both data and data with derivatives
and provides opportunity of shape refinement by
suitable choice of weights. The rational structure
of interpolant incorporates data having
singularities.
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Table 3. Numerical results of Fig. 5. -0.6056 | 0.4204 | -0.3648 | -0.0293 | -0.8330 | 0
p= = = p= = p= -0.6056 | 0.4204 | 0.4164 | 0.3520 | 0.2030 | 0.2395
a(vl) E(Vl &(Vz) E(VZ) a(\é) E(\Q -0.6056 | 0.4204 | 0.2030 | 0.2395 | -0.3648 | -0.0293
o335 ooees Tos0s0 Tomes T oessi 1 o096 0.3277 | -0.3432 | 0.7605 | -0.0810 | 0.3377 | -0.3749
o3ea o0 Tooes Toosio o163 1 07308 0.3277 | -0.3432 | 0.3377 | -0.3749 | 0.0523 | -0.5950
o3E o0 Toes Tosise | oaies | 03683 0.3541 | 04700 | 0.1673 | 0.2395 | -0.1429 | 0.3795
o059 Tore T oes Tosise | oids | 039 03541 | 0.4700 | -0.1429 | 0.3795 | -0.1462 | 0.6496
04151 | 00999 | -04365 | -0.0313 | -0.1429 | 0.3795 -04368 | 0 -0.8330 | 0 -0.4168 | 0.2682
il Tooses o Toses o163 1 02308 04368 | 0 -0.4168 | 0.2682 | -0.1462 | 0.6496
04368 | 0 01462 | 06496 | 02039 | 0.4767 -0.3680 | -0.2914 | -0.8330 | 0 -04368 | 0
saer o3 Toes Toosio o33 1 oas -0.3680 | -0.2914 | -0.4368 | 0 -0.1892 | -0.6438
oaer TomEe Tossst o o300 1 02308 -0.3680 | -0.2914 | 0.0523 | -0.5050 | 0.3377 | -0.3749
30 Tomn o3 oo o760 | 0080 -0.3680 | -0.2914 | -0.1892 | -0.6438 | 0.0523 | -0.5950
30 Toaen oaies | odoos T o0sos | 04243 -0.3680 | -0.0877 | 0.3277 | -0.3432 | 0.0523 | -0.5950
o365 00995 o503 Tomes o338 | 00662 -0.2726 | -0.0877 | -1.0782 | -0.0280 | 0.3277 | -0.3432
o365 o093 Toms T ooser o008 | 04243 03420 | 04822 | -0.1842 | -0.2984 | 0.1673 | -0.2255
S0 Tomer oo | osess | oisos | 06438 03420 | 04822 | -0.0098 | -0.4243 | -0.1842 | -0.2984
S0 Tomer o oos7 Tows | 0590 -0.3648 | -0.0293 | -0.4168 | -0.4023 | -0.8330 | 0
so570 Tomer oises T oems o4z 1o -0.3648 | -0.0293 | -0.0998 | -0.4243 | -0.4168 | -0.4023
585 o5 o256 o057 Toz030 05305 0.0970 | -0.4292 | 0.2030 | 0.2395 | -0.2726 | -0.0877
o6 Toted Tos0s0 Tomes T o3esi 1 oas 0.0970 | -0.4292 | 0.6481 | 0.0967 | 0.2030 | 0.2395
56 Toted T Toss T ooss0 o2 | o057 0.0970 | -0.4292 | 0.2039 | 0.4767 | 0.6481 | 0.0967
SaET Tooses Toies oo | oiss | 03982 0.0970 | -0.4292 | -0.4368 | 0 0.2039 | 0.4767
i Tooses T oisz T ozeer o236 | 0033 0.3230 | 0.0356 | -0.4365 | -0.0313 | -0.1842 | -0.2984
53530 Tooas Tos0s0 Tome 1 oidzs | o39e 0.3230 | 0.0356 | -0.1429 | 0.3795 | -0.4365 | -0.0313
53530 Toos Toesl Tooesr o208 10276 0.3230 | 0.0356 | -0.1842 | -0.2984 | -0.0998 | -0.4243
53530 Toos oz T ooser 1 oessi 1 o096 0.3230 | 0.0356 | -0.0998 | -0.4243 | 0.3385 | -0.0662
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Table 4. Numerical results of Fig. 8.

F

oF

>

)| S| )| S| )| S
-1.6735 | 1.0083 | -0.3225 | -0.6049 | -1.1498 | 1.3772
-0.1281 | -0.8943 | 1.1717 -1.6762 0.2507 | -2.0246
0.8933 | -2.0513 | 0.2507 -2.0246 11717 | -1.6762
-1.3532 | -0.5728 | -0.3225 | -0.6049 | -1.6735 | 1.0083
-1.5332 | 1.3660 | -1.3242 1.0709 -1.6735 | 1.0083
-1.5332 | 1.3660 | -1.6735 1.0083 -1.1498 | 1.3772
-0.5430 | -1.2417 | -0.5131 | -1.8853 | -0.3892 | -1.2378
-0.6477 | 0.9433 | -0.3282 1.0381 -0.3549 | 0.9333
0.2924 0.5204 1.0558 0.2771 0.6424 0.4448
0.2924 0.5204 | -1.1498 1.3772 -0.3225 | -0.6049
0.2924 0.5204 | -0.3225 | -0.6049 1.0558 0.2771
-0.5754 | -2.3701 | 0.8933 -2.0513 | -0.3225 | -0.6049
-0.5754 | -2.3701 | -0.3892 | -1.2378 | -0.5131 | -1.8853
1.7071 | -0.8607 | 0.8933 -2.0513 11717 | -1.6762
1.7071 | -0.8607 | 1.0558 0.2771 -0.3225 | -0.6049
1.7071 | -0.8607 | -0.3225 | -0.6049 0.8933 | -2.0513
-0.3357 | 0.2227 | -0.1381 0.3972 -0.1224 | 0.2553
-0.3357 | 0.2227 | -0.2784 | -0.1787 | -0.5345 | -0.1667
-0.6519 | -0.7629 | -1.5533 | -0.3904 | -1.2949 | -0.7794
-0.2526 | -0.1507 | -0.1034 | -1.0139 | -0.6519 | -0.7629
-0.2526 | -0.1507 | -0.6519 | -0.7629 | -0.3782 | -0.1342
-0.1209 | -1.2098 | -0.3892 | -1.2378 0.1838 | -1.2572
-0.1209 | -1.2098 | -0.5430 | -1.2417 | -0.3892 | -1.2378
-0.6861 | 0.7318 | -1.3242 1.0709 -0.7312 | 0.6392
-1.3450 | 0.6226 | -0.6477 0.9433 -0.5760 | 0.3808
-1.4327 | 0.5010 | -1.3450 0.6226 -1.8624 | 0.3052
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-2.2530 | -0.1128 | -1.2949 | -0.7794 | -1.5333 | -0.3904
-0.4341 | -0.3013 | -0.6519 | -0.7629 | -1.2949 | -0.7794
-0.4341 | -0.3013 | -0.3782 | -0.1342 | -0.6519 | -0.7629
-0.1800 | -0.0508 | -0.2286 | -0.0409 | -0.2526 | -0.1507
-0.1363 | -0.0287 | -0.2526 | -0.1507 | -0.3782 | -0.1342
0.0357 0.0282 | -0.2286 | -0.0409 | -0.2600 | -0.0632
0.0357 0.0282 | -0.1034 | -1.0139 | -0.2526 | -0.1507
0.0357 0.0282 | -0.2526 | -0.1507 | -0.2286 | -0.0409
-0.1349 | -0.5913 | -0.1381 0.3972 -0.6632 | -0.4288
-0.1349 | -0.5913 | 0.0357 0.0282 -0.1381 | 0.3972
-0.2084 | -0.2578 | -0.1672 | -0.2768 | -0.1604 | -0.1961
-0.2302 | -0.3872 | 0.1838 -1.2572 | -0.3892 | -1.2378
-0.2302 | -0.3872 | -0.3892 | -1.2378 | -1.3532 | -0.5728
-0.2302 | -0.3872 | -1.3532 | -0.5728 | -0.6861 | 0.7318
-0.2302 | -0.3872 | -0.6861 0.7318 -0.3282 1.0381
-0.2302 | -0.3872 | -0.3282 1.0381 -1.4327 | 0.5010
-0.2302 | -0.3872 | -1.4327 0.5010 -1.5533 | -0.3904
-0.2302 | -0.3872 | -0.1034 | -1.0139 0.1838 | -1.2572
0.1281 | -1.0147 | -0.1349 | -0.5913 | -0.1209 | -1.2098
0.1281 | -1.0147 | 0.1838 -1.2572 | -0.1034 | -1.0139
0.1281 | -1.0147 | -0.1209 | -1.2098 0.1838 | -1.2572
0.1281 | -1.0147 | -0.1034 | -1.0139 0.0357 0.0282
0.1281 | -1.0147 | 0.0357 0.0282 -0.1349 | -0.5913
-0.4712 | -0.9759 | -0.6632 | -0.4288 | -0.5345 | -0.1667
-0.4712 | -0.9759 | 0.2507 -2.0246 | -0.5131 | -1.8853
-0.4712 | -0.9759 | -0.1281 | -0.8943 0.2507 -2.0246
-0.4712 | -0.9759 | -0.5131 | -1.8853 | -0.5430 | -1.2417
-0.4712 | -0.9759 | -0.5430 | -1.2417 | -0.6632 | -0.4288
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-0.4712 | -0.9759 | -0.1604 | -0.1961 | -0.1281 | -0.8943
-0.4712 | -0.9759 | -0.5345 | -0.1667 | -0.2084 | -0.2578
-0.4712 | -0.9759 | -0.2084 | -0.2578 | -0.1604 | -0.1961
-0.5754 | -2.3701 | -0.5131 | -1.8853 0.2507 -2.0246
-0.5754 | -2.3071 | 0.2507 -2.0246 0.8933 | -2.0513
-0.5754 | -2.3071 | -1.3532 | -0.5728 | -0.3892 | -1.2378
-0.5754 | -2.3071 | -0.3225 | -0.6049 | -1.3532 | -0.5728
-0.6632 | -0.4288 | -0.1381 0.3972 -0.3357 | 0.2227
-0.6632 | -0.4288 | -0.3357 0.2227 -0.5345 | -0.1667
-0.6861 | 0.7318 | -0.7312 0.6392 -0.3549 | 0.9333
-0.6861 | 0.7318 | -0.3549 0.9333 -0.3282 1.0381
-0.6861 | 0.7318 | -1.6735 1.0083 -1.3242 1.0709
-0.6861 | 0.7318 | -1.3532 | -0.5728 | -1.6735 1.0083
-1.4327 | 05010 | -0.3282 1.0381 -0.6477 | 0.9433
-1.4327 | 0.5010 | -0.6477 0.9433 -1.3450 | 0.6226
-2.2530 | -0.1128 | -1.5533 | -0.3904 | -1.4327 | 0.5010
-2.2530 | -0.1128 | -1.4327 0.5010 -1.8624 | 0.3052
-0.1363 | -0.0287 | -0.1552 | -0.0376 | -0.1800 | -0.0508
-0.1363 | -0.0287 | -0.1800 | -0.0508 | -0.2526 | -0.1507
0.0357 0.0282 | -0.2600 | -0.0632 | -0.1224 | 0.2553
0.0357 0.0282 | -0.1224 0.2553 -0.1381 | 0.3972
-0.1349 | -0.5913 | -0.6632 | -0.4288 | -0.5430 | -1.2417
-0.1349 | -0.5913 | -0.5430 | -1.2417 | -0.1209 | -1.2098
-0.2084 | -0.2578 | -0.2784 | -0.1787 | -0.1880 | -0.2364
-0.2084 | -0.2578 | -0.5345 | -0.1667 | -0.2784 | -0.1787
-0.2084 | -0.2578 | -0.1370 | -0.2404 | -0.1672 | -0.2768
-0.2084 | -0.2578 | -0.1880 | -0.2364 | -0.1370 | -0.2404
-0.2302 | -0.3872 | -1.5533 | -0.3904 | -0.6519 | -0.7629
-0.2302 | -0.3872 | -0.6519 | -0.7629 | -0.1034 | -1.0139
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